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Introduction

Bone is a remarkable and exquisite biomaterial. It is 
highly adaptive, structurally dynamic and metabolically 
active, and is superior to all other biomaterials in terms 
of strength and toughness1-4. In particular, bone structure, 
size and strength are reliant upon and responsive to the 
routine physiological and mechanical demands placed 
upon it5-12. Mechanical stimuli thus initiate or inhibit bone 
modelling and remodelling processes in response to 

variations in internal or external forces or as a consequence 
of immobilisation13-17. More specifically, bone continuously 
modifies and regenerates itself in the presence or 
absence of mechanical loading, which subsequently leads 
to the accrual (formation), maintenance (homeostasis) 
or degradation (resorption) of bone mass18-24. This is 
achieved through a sophisticated process involving the 
careful cellular regulation and coordination of osteoblasts 
(bone matrix deposit) and osteoclasts (bone matrix 
resorption) in order to remove damaged or extraneous 
bone material and subsequently replace it with new robust 
material19-21,25-30. As bone remodelling is a continuous 
process, even a slight perturbation or imbalance in 
either of these regulatory cells can lead to osteopenia or 
osteoporosis; such is the importance of bone health to load 
tolerance capabilities29-35. In particular, the mechanical 
integrity and performance of bone under various loading 
conditions is directly affected by its mechanical properties 
and geometric characteristics1,7,12,13,18,36 which are both 

Abstract

Understanding how bones are innately designed, robustly developed and delicately maintained through intricate 
anatomical features and physiological processes across the lifespan is vital to inform our assessment of normal bone 
health, and essential to aid our interpretation of adverse clinical outcomes affecting bone through primary or secondary 
causes. Accordingly this review serves to introduce new researchers and clinicians engaging with bone and mineral 
metabolism, and provide a contemporary update for established researchers or clinicians. Specifically, we describe the 
mechanical and non-mechanical functions of the skeleton; its multidimensional and hierarchical anatomy (macroscopic, 
microscopic, organic, inorganic, woven and lamellar features); its cellular and hormonal physiology (deterministic and 
homeostatic processes that govern and regulate bone); and processes of mechanotransduction, modelling, remodelling 
and degradation that underpin bone adaptation or maladaptation. In addition, we also explore commonly used methods for 
measuring bone metabolic activity or material features (imaging or biochemical markers) together with their limitations.

Keywords: Cortical, Imaging, Modelling, Remodelling, Trabecular

The authors have no conflict of interest.

Corresponding author: Dr. Nicolas H. Hart – PhD, AES, CSCS, ESSAM, 
Senior Research Fellow, Edith Cowan University, 270 Joondalup Drive, 
JOONDALUP, Perth, WA, Australia, 6027

Edited by: G. Lyritis
Accepted 24 April 2020

Journal of Musculoskeletal
and Neuronal Interactions

P
ub

lis
he

d 
un

de
r 

C
re

at
iv

e 
C

om
m

on
 L

ic
en

se
 C

C
 B

Y
-N

C
-S

A
 4

.0
 (A

tt
ri

bu
ti

on
-N

on
 C

om
m

er
ci

al
-S

ha
re

A
lik

e)

J Musculoskelet Neuronal Interact 2020; 20(3):347-371



348http://www.ismni.org

N.H. Hart et al.: Biological basis of bone strength

indicators of bone health and underpin bone strength.
The ability of bone to withstand forces and moments 

(mechanical loads) differs substantially across the loading 
spectrum under various loading conditions, specific to the 
mode, magnitude, direction, rate and frequency of load 
applied3,12,16,17,37-39. As bone is anisotropic in nature, it has 
different thresholds of load tolerability across different planes 
of action2,18,40,41. Indeed, habitual human behaviours routinely 
expose bones to various, often unpredictable loading patterns 
spanning from cyclical low-grade forces when walking or 
running, to sudden high-grade forces when jumping, landing 
or changing direction. As a result, compressive, torsional, 
transverse and tensile loads in combination and isolation are 
routinely applied to bone, exposing the skeleton to stimuli 
that can lead to positive bone-specific and site-specific 
adaptations16,42-49, or in the absence of suitable conditioning, 
recovery and nutrition, an increased likelihood of injury50-57.

Despite the complex and multidimensional relationship 
between various loading schemes and bone mechanical 
properties (beyond the scope of this review, and published 
earlier12), bone strength and stiffness are greatest 
in the direction by which loads are most commonly 
expressed13,44,49,58. The prevaling bone structure reflects an 
appropriate adaptation to mechanical loading highlighting a 
specificity of adaptation (site-specific) as force transmission 
regulates osteogenic (anabolic) bone formation outcomes 
concomitantly with other stochastic (spatially non-specific) 
adaptations2,16,20,21,59. In particular, the regulation and co-
ordination of bone to physically adapt to loading demands 
is initiated and managed at the cellular level by osteocytes 
through mechanotransduction59-62. Proportionate to 
mechanical stimulation, osteocytes biochemically promote 
osteogenesis by coordinating osteoblast and osteoclast 
activity so that overall bone morphology and bone shape 
positively adapts in favour of greater bone strength63-65. 
Within this process, older osteoblasts make way for 
new osteoblasts by transforming into osteocytes which 
become embedded into the bone-matrix. As osteocytes 
form 95% of bone-matrix composition, this increase in 
osteocyte concentration leads to an increase in bone mass 
while maintaining regulatory osteoblast-to-osteoclast 
homeostasis7,19-21,66,67.

As reviewed below, bone loss and bone accrual are not 
necessarily co-located and occur in a targeted or site-
specific manner around bone circumference and along 
its length, additional to observable coadaptive bone 
morphological traits. A thorough understanding of these 
cellular and physiologic processes and their contribution 
to determining and maintaining bone strength will facilitate 
clinical diagnostics, designing appropriate interventions, 
and evaluating clinical musculoskeletal outcomes of 
pharmacological and non-pharmacological interventions68. 
Accordingly, this review aims to provide a comprehensive 
update of current scientific literature and our understanding 
of these processes for clinicians and researchers, in 
companionship with the mechanical basis of bone strength12 
published earlier.

Bone strength

Bone strength explicitly refers to the ability of bone to 
withstand force prior to catastrophic failure1,24,69-72, and 
is inextricably linked with fatigue resistance to repetitive 
loads73-78. Given the complex and multidimensional nature of 
bone, its strength is ultimately determined by the interaction 
and adjustment of its material and structural properties 
evident at macroscopic, microscopic and nanoscopic 
levels1,70,72,79-82. At the material level, the collagenous 
extracellular matrix of bone provides resistance to tension, 
whereas the mineral inorganic phase of bone provides 
resistance to compression. Indeed, variations in collagen 
(such as osteogenesis imperfecta) or mineralisation (such 
as anti-resorptive drugs) can weaken or strengthen bone. 
Microscopically, the trabeculae in trabecular meshwork have 
implications on bone stuctural strength, and macroscopically, 
varying the shape of the bone will increase or decrease the 
amount of bending and torsion a bone can withstand given a 
particular amount of total mineral mass. 

The adaptability, modulation and regulation of bone 
to mechanical and non-mechanical stimuli provides 
practitioners with the ability to directly influence and 
target bone strength through numerous interdependent 
mechanisms. Specifically, deterministic site-specific bone 
strength adaptations are driven by habitual mechanical 
loading, whereas general and non-specific bone 
strength adaptations are predominantly driven through 
endocrinological variations, responsive to physical, 
pharmacological and nutritional interventions1,32,33,83-86. 
As all forms of bone adaptation collaboratively determine 
structural integrity and mechanical competency, it is 
desirable to optimise and preserve bone strength during 
growth, development, maturity and advanced age through 
multi-disciplinary and holistic approaches which importantly 
address all bone strength determinants. The biological basis 
of bone strength is determined by its structure and function 
through its anatomy and physiology.

Bone anatomy

Skeletal function

Our skeletons are responsible for several important 
mechanical and non-mechanical functions22,36,87. 
Mechanically, they provide a structural framework and stable 
foundation for human movement and locomotion to occur, 
generating mechanical rigidity and kinematic connectivity 
within the body22,36,88-90. It specifically achieves this by 
providing skeletal muscle with attachment sites to use as 
leverage points and platforms with which to act, contract and 
produce force, and serves to protect the brain, spinal cord and 
internal organs2,18,26,36,91,92. Non-mechanically, bone provides 
a reservoir for mineral deposition and blood regulation of 
calcium and phosphorous, supports haematopoiesis, defends 
against acidosis, and absorbs or captures potentially toxic 
minerals22,26,36,91,93. In order to fulfil these many functions 
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simultaneously, bone has unique structural, morphological 
and mechanical properties that are highly dynamic, 
metabolically active and physiologically adaptive to the 
environment in which they’re exposed21,23,88,94. Bone is also 
highly vascular, facilitating the perfusion of oxygenated blood 
to enable the removal of metabolites and provision of nutrient 
availability required by bone to constantly model (form new 
bone) and remodel (recycle damaged bone) in response 
to routinely imposed mechanical demands, subsequently 
altering its configuration and material properties to 
preserve or increase strength in order to meet its functional 
requirements18,19,24,79,89. 

In its adult form, the human skeleton consists of 
approximately 200 distinguishable bones, with 74 located 
in the axial skeleton, and 126 located in the appendicular 
skeleton22,95. Long bones, however, are the most commonly 
loaded structures and therefore strongest load-bearing 
bones in the body, predominantly in the appendicular 
skeleton. They comprise of a hollow cylindrical shaft known as 
the diaphysis, a cone-shaped proximal and distal metaphysis, 
and rounded proximal and distal epiphysis22,96-98, each portion 
has different architectural features which are organised and 
configured to withstand and manage different physical loads 
during regular activities of daily living79,80,88,99.

Macroscopic architecture 

Bone is a structurally complex and sophisticated 
biomaterial1,2,4,33. It must be rigid and stiff to withstand forces 
and accommodate loading, yet be flexible and elastic to deform 
and absorb energy24,80,100,101. It must shorten and widen under 
compression, yet lengthen and narrow under tension, whilst 
also withstanding torsional and shear forces in isolation and 
in combination without experiencing catastrophic failure24,79. 
In order to manage these contradictory and paradoxical 
requirements, the skeleton contains two macroscopic 
osseous tissues (trabecular and cortical bone) which are 
architecturally and functionally different33,81,102-105. In its 
entirety, skeletal mass consists of approximately 20% 
trabecular tissue and 80% cortical tissue, which co-exists 
at various proportions in all bones through-out the body in 
accordance with the functional and regional demands of each 
individual bone18,22,79,80,105,106. The structural intricacies and 
interactions between these two osseous tissues, enable long 
bones to be remarkably light yet durable and strong in order 
to facilitate locomotion24,79,82,107,108.

Trabecular bone

Trabecular bone, also known as cancellous bone, is 
encapsulated beneath cortical bone. It is most prominently 
found in weight-bearing skeletal structures, specifically 
the proximal and distal ends of long-bones (epiphyseal 
and metaphyseal regions), the carpals and tarsals of the 
extremities, and vertebrae22,79,81,109,110. Texturally, trabecular 
tissue presents as a meshwork of bone (trabeculae) with 
many interconnecting spaces through-out which contain 

red bone marrow88,102,111-114. The three-dimensional lattice-
like structure of trabecular bone is primarily organised 
in the direction from which the greatest stresses are 
most commonly experienced, a design best suited for the 
mechanical loading of bone7,89,101,109,114-116. The spongy and 
porous architecture of trabecular bone enables it to store 
large amounts of energy prior to yielding18,23,105,117,118, thus 
allowing it to routinely tolerate cyclical low-grade forces. 

Cortical bone

Cortical bone, also known as compact bone, forms the thin 
superficial layer of all bones, though is most prominently 
found in the thick central cortex (diaphysis) of long bones 
through-out the appendicular skeleton2,22,95,119. Cortical 
bone encapsulates trabecular bone, however the relative 
co-existence and composition of each tissue varies between 
bones through-out the skeleton1,18,99,102. In long bones, cortical 
tissue is arranged in a cylindrical fashion with concentric 
layers across two primary surfaces: the periosteum (a 
dense fibrous membrane forming the outside layer) and 
endosteum (a thin membrane forming the inner layer) of 
the diaphyseal shaft79,95,97,111,119-122. Both surfaces contain 
important cells (osteoclasts, osteoblasts and osteocytes) 
responsible for modelling and remodelling processes 
essential to bone adaptation and osteogenesis17,24,25,97,123. 
The endosteum additionally lines the central cavity with 
yellow marrow88,95,111,112,122. Structurally, cortical bone is 
highly organised, densely packed, rigid, and texturally 
smooth18,23,111,120, with mineralized lamellar bone and collagen 
fibre matrix most prominently arranged in the direction of 
routine mechanical stress69,101,119,120,124,125. This provides 
cortical bone with an increased capability to tolerate sudden, 
high impact forces i.e. a sample of cortical bone is ~25% 
stronger than a sample of trabecular bone1,18,23, 119,126.

Microscopic architecture 

Bone also has microscopic and sub-microscopic 
levels which, together with the macroscopic level, form a 
multidimensional architectural biomaterial with a deliberate 
mass (size, geometry and density) aimed at achieving 
optimal structural strength1,33,70,73,80. Microscopically, bone 
presents in the form of woven and lamellar bone at the 
tissue level81,98,127-129, and consists of organic and inorganic 
components at the material level26,33,59,130-132.

Tissue level

Bone presents in the form of immature (woven) and mature 
(lamellar) tissue at different stages of the modelling and re-
modelling processes at the microscopic level22,100,127,129,133-135. 
Woven tissue is an immature form of bone characterised by 
a random and spontaneous collagen arrangement, a large 
volume of cells, and relatively low tissue density100,104. It is 
formed rapidly, producing a highly unorganised and porous 
structure22,127,128. Woven bone features primarily through-
out development, exclusively forming the entire skeleton at 
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birth prior to a gradual transformation into mature lamellar 
bone during growth and physical maturation22,98,100,136. At any 
other time, woven bone formation occurs only following an 
injury or extreme structural overload which is thought to be 
a rapid, protective and restorative response to significantly 
damaged or weakened hard tissue structures2,127,137-139. It is 
therefore considered a premature and provisional material. 
Lamellar tissue, however, is a mature form of bone, which 
eventually replaces woven tissue in the form of trabecular or 
cortical bone formations. Lamellar tissue is characterised by 
a precise and deliberate parallel and concentric arrangement 
of lamellae sheets produced slowly due to a low turnover 
rate2,81,98,134. Lamellae sheets are formed in alternating 
directions that vary in rotational position and thickness in 
order to optimally withstand mechanical loads, in particular 
torsional stress1,81,95,128,134. Lamellar bone is therefore denser 
and stronger than woven bone22,100,101,140.

Material level

Bone is a specialised, bi-phasic connective tissue consisting 
of extracellular organic material coupled with a uniquely high 
content of mineralised inorganic material1,18,33,124,130,141. The 
organic portion provides bone with one-third of its mass 
and two-thirds of its volume; whereas the inorganic portion 
provides bone with the remaining two-thirds of its mass 
and one-third of its volume59,70,132. The extracellular organic 
component is mostly collagenous, conferring flexibility and 
resilience to bone by solidifying in tension as a protection 
against stretching, twisting and torsion142-146. Conversely, 
the mineralised inorganic component is primarily calcium 
and phosphate in the form of an insoluble salt known as 
hydroxyapatite130,147-152, giving bone its hardness and rigidity, 
particularly in compression153-155. As a result, the overall 
structural strength of bone relies upon the joint contribution 
and inter-play of these organic and inorganic material 
properties1,2,24,148,153, such that variations of inorganic 
mineral density will potentially adjust stiffness and flexibility 
arrangements in bone24,130,156, the optimal balance of which 
remains largely unknown. That is, highly mineralised bone 
can become brittle (e.g. atypical femoral fractures), whereas 
less mineralised bone will be tougher yet less stiff (e.g. 
greenstick fracture). Fortunately, this can be somewhat 
examined as elements held within the mineralised (inorganic) 
portion of bone provide considerable resistance to X-ray 
beams, forming the theoretical basis underpinning the use of 
bone densitometry devices.

Bone physiology

Historically, bone has been regarded as the domain 
of anatomical study. However mechanically receptive, 
biologically adaptive and metabolically active features of 
bone have since solidified it as a biomaterial well-suited for 
physiological and biomechanical investigation2,12,69,89,157. 
In particular, the skeleton is able to construct (model) and 
reconstruct (remodel) itself through cellular processes in 

response to developmental and mechanical loading demands 
through tightly controlled cellular activities20,21,24,25,91,93,158. 

Cellular mechanisms

Bone is generated, regulated and maintained by an 
interaction of four key cells: osteoblasts, osteoclasts, 
osteocytes and extra-cellular lining cells13,19,26-28,159. 
Osteoblasts are anabolic in nature, producing new bone 
material by synthesizing and calcifying newly generated 
collagen2,21,23,141. Osteoblasts are uniquely adaptable and 
compatible, transforming into bone lining cells (surrounding 
the extra-cellular matrix) and osteocytes (embedded within 
the bone matrix) during the osteogenic process25,160-162. 
Conversely, osteoclasts are a catabolic cell which degrades, 
dissolves and resorbs bone material, often as a response 
to material damage or disuse21,29,123,163. Osteoclasts have 
a limited lifespan, undergoing apoptosis (programmed cell 
death) within 2 to 4 weeks of osteoclastogenesis25,123,164. 
Osteoblasts and osteoclasts work independently during bone 
creation and formation (modelling), and co-operatively via a 
basic multi-cellular unit (BMU) during bone maintenance and 
homeostasis (remodelling).

Osteocytes are central to bone development and renewal 
as the most abundant residential cell in bone, accounting for 
approximately 90% to 95% of all bone cells66,141,162,165,166. 
Specifically, osteocytes are descendants of osteoblasts 
produced during osteogenesis, which subsequently become 
entombed within the mineralised collagen matrix25,27,66,109,162. 
Osteocytes form a well-connected network of sensory 
channels to detect environmental alterations and 
communicate reactionary processes to osteoblasts, bone 
lining cells and fellow osteocytes13,136,165,167,168. This network 
is explicitly formed by dendritic connections (~60 to 80 
per osteocyte) which proliferate through canaliculated 
passages to provide a functional and mechanosensitive 
platform integral to the detection of mechanical load and 
associated microdamage13,66,158,165,167. This mechanically 
sensitive function, known as mechanotransduction, enables 
bone to physiologically detect and convert mechanical 
energy into proportionate biochemical signals in order 
to promote growth and repair processes59,60,65,158,168. The 
process of mechanotransduction, including how bones sense 
mechanical changes, are described further under the Bone 
Adaptation section of this review.

Hormonal mechanisms

Bone growth, development and preservation is largely 
reliant upon hormonal regulation, globally controlling skeletal 
homeostasis somewhat independently of mechanical loads 
through-out the lifespan in order to facilitate non-mechanical 
functions of bone33,169-173. Specifically, the endocrine system 
serves to maintain bone mineral deposition and homeostatic 
cellular balance through continual, non-mechanically induced 
generation and regeneration of bone during biological growth 
and maturation24,174-177. While the endocrine system does 
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not explicitly strive to optimise bone strength, endocrine 
status can have a profound, indirect and negative impact 
on structural integrity and mechanical competency when 
irregular hormonal environments arise172,173,178-183. Endocrine 
activity therefore forms a central component of a complex 
biological system that mediates calcium-phosphate balance, 
energy metabolism and bone mineralisation in response to 
dynamic and volatile physiological requirements179,184-190. 
In this regard, endocrine function majorly influences bone 
health and metabolism, ascending into domination through 
adulthood and advanced ageing169,175,178,182,183,191,192.

Endocrinological regulation of bone metabolism is highly 
influenced and tightly controlled by sub-categories of growth, 
gonadal and calcitropic hormones (Table 1), with varying 
levels of contribution and relative dominance through-out 
life170,174,175,178,187-206. Specifically, growth hormones exert 
formative effects; gonadal hormones exert formative and anti-

resorptive effects; and calcitropic hormones exert homeostatic 
effects; co-operatively acting to promote bone mass accrual 
during growth and maturation171,178,179,183-186,189,192,207-213. 
However, hormonal activity begins to decline following 
the establishment of peak bone mass, as bone formation 
and resorption shifts from net formation during ontogeny, 
to equilibrium during early-to-middle adulthood, and net 
resorption during advanced and older age24,34,71,173,214. 
This imbalance in bone metabolism is primarily driven by 
altered endocrine-paracrine activity, and confounded by 
multi-dimensional, synergistic and antagonistic hormonal 
interactions necessary to achieve and maintain metabolic 
homeostasis21,23,123,191,215. As a result, hormonal imbalances 
and environmental irregularities underpinning deficient 
endocrine function form the nutritional and pharmacological 
basis of bone preservation strategies34,214,216-218, utilising 
natural and artificial suppression and stimulation of bone 

Table 1. Endocrine regulation of bone metabolism.

Hormones General Description Bone Metabolism

Growth Regulators

hGH
Peptide hormone secreted from the anterior pituitary; influences muscle, liver, 
kidney and bone; promotes longitudinal growth of bone.

Stimulates Formation

IGF-1
Polypeptide with an essential role in growth and development; primarily 
circulated by liver; also paracrine delivered by non-hepatic tissues.

Stimulates Formation

Glucocorticoids
Produced by adrenal glands, inhibits synthesis of IGF-1, supresses BMP-2 and 
calcium absorption.

Inhibits Formation 
Stimulates Resorption

Ghrelin
Gut-derived peptide hormone; secretagogue of growth hormone; modulates 
energy homeostasis.

Stimulates Formation
Inhibits Resorption

Leptin
Adipocyte peptide hormone; proportional to fat stores; modulates energy 
homeostasis.

Inhibits Formation 
Stimulates Resorption

Thyroxin (T
3
 and T

4
)

Tyrosine-based hormones produced by thyroid gland; regulates energy 
metabolism through thyroid stimulation hormone (TSH) activity.

Stimulates Formation 
Stimulates Resorption 

Net Effect: Homeostatic

ACTH 
Peptide hormone secreted from the anterior pituitary; stimulates cortisol 
production; dose- dependent proliferation of osteoblast activity.

Stimulates Formation 
Stimulates Resorption 

Net Effect: Homeostatic

Oxytocin
Peptide hormone secreted from the posterior pituitary; modulated by estrogen; 
autocrine- paracrine osteoblast regulator of formation.

Stimulates Formation 
Stimulates Resorption 

Net Effect: Homeostatic

Gonadal Regulators

Androgens
Sex steroid secreted from testes (men) and adrenals (men and women); also 
converts to estrogen; acts in presence of hGH.

Stimulates Formation

Estrogen
Synthesised from androgens in ovaries (women) and extra-glandular tissue 
(men and women); dominant role in bone metabolism.

Permits Formation 
Inhibits Resorption

Calcitropic Regulators

PTH 
Polypeptide secreted by parathyroid gland, tightly controls calcium and 
phosphate; acts to maintain bone mineral homeostasis.

Stimulates Formation 
Stimulates Resorption 
Net Effect: Formation

Calcitonin 
Secreted by thyroid gland when plasma calcium is elevated; lowers plasma 
calcium; deposits into bone; relatively weak in comparison to PTH.

Stimulates Formation 
Inhibits Resorption

Vitamin D
3

Activated in the liver and kidney; essential for intestinal absorption of calcium 
and phosphate; deficiency results in bone demineralisation.

Permits Formation 
Stimulates Resorption
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resorption and formation to prevent and manage pathogenic 
conditions through-out the life-span.

Bone adaptation

Mechanotransduction

Bone modelling and remodelling paradigms pioneered 
by Julius Wolff, improved by Wilhelm Roux (Wolff’s Law), 
and expanded upon by Harold Frost (Mechanostat Theory), 
remain the central focus of emerging and contemporary 
research11,89,219-233. Their meritorious work collectively 
describes the ability of bone to alter its mass and structure 
in response to routine mechanical loads15,69,92,106,234-238. 
However, scientific understanding of this mechanobiological 
relationship remains elusive and poorly understood. The 
conceptual basis of mechanical events stimulating and 
mediating bone formation, adaptation, maintenance and 
repair is widely accepted2,15,61,141,239. However, the cellular 
mechanisms and structural framework which underpins this 
observed phenomenon is not yet fully understood and forms 
the basis of current-day research15,59,62,67,240,241. 

In principle, mechanotransduction (Figure 1) refers to 
the conversion of biophysical forces (mechanical load) into 

cellular responses which drive morphological change at the 
tissue level, a functional adaptation of bone which purposely 
improves structural integrity and strength13,63-65,158,242,243. 
This biologic detection of mechanical force and their 
conferred cellular responses primarily involve four key 
activities: 1) mechanical coupling, 2) biochemical coupling, 
3) signal transmission, and 4) effector response60,63,98,133,244. 
Specifically, forces which lead to bone deformation create 
interstitial fluid movement within canaliculi, stimulating 
biochemical activity via mechanosensory cells64,245-251. 
Piezoelectric signals are then transmitted through 
comprehensive lacuno-canalicular networks of osteocytes, 
lining cells and osteoblasts to determine the format and 
magnitude of cellular response relative to the perceived 
dose of mechanical load59,65,98,113,141,252-255. This fundamental 
dose-response relationship between mechanical load and 
structural bone adaptation provides the foundation of bone 
modelling and re-modelling theory63-65,158,240,243,256.

Modelling

Modelling is a dynamic and constructive process which 
adjusts the size, shape and strength of bone in order to 

Figure 1. Mechanotransduction (adapted from 14,15): illustrating the hierarchical structure of bone and the organizational structure 
of osteocytes within (left); and the mechanically induced fluid flow from hydrostatic pressure and osteoprogenitors through which 
biochemical signals proliferate (right).
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achieve its structural potential during ontogeny, specifically 
in response to physiological and mechanical influences 
through-out physical maturation22,79,111,122,257-259. It comprises 
of a complex and multifarious array of cellular and material 
activity which interact to position and configure cells and 
matrices during growth and development7,69,239. At the cellular 
level, osteoblasts work independently from osteoclasts to 
create an environment where matrix deposition exceeds 
matrix resorption11,15,22,111,260,261. At the tissue level, this is 
expressed through periosteal apposition and simultaneous 
yet slower endocortical resorption22,73,82,97,107,111,122,261,262, 
leading to the formation of new bone material and partial 
preservation of old bone material to deliver a net increase in 
bone mass15,24,79,243,263,264. 

Longitudinal and radial growth are developmental 
features of depositional modelling during ontogeny. In 
particular, collagen is synthesised and deposited onto the 
extracellular matrix in order to elongate, thicken and widen 
the periosteum, while endocortical resorption expands the 
marrow cavity to concurrently increase the diameter of the 
endosteum together with the periosteum22,69,79,82,97,107,122,265. 
These morphological alterations structurally enhance bone 
strength through two key mechanisms: 1) increasing the 
bony (i.e. excluding any cavities) cross-sectional area, and  
2) by placing the material farther from the centre of the bone, 
which increases the polar moment of inertia1,22,69,73,82,258. 
Increasing the amount of bone material in a given cross-
section improves bone strength in compression and tension, 
whereas distributing bone material farther from the centre 
of the bone improves strength in bending and torsion. For 
further details on bone mechanics, refer to our companion 
review12. Ultimately, these morphological alterations keep 

stresses and strains of applied mechanical loads within a 
desired range by distributing compressive forces over a 
larger area, while also resisting bending and twisting forces 
at the mid-shaft69,72,73,107,266-268. 

Bone formation is presently thought to be limited to 
the first three-decades of human life, achieving maturity 
at this time to establish peak bone mass269-271. The 
potential of bone to develop during growth is influenced 
by a range of non-modifiable (gender, ethnicity, genetics) 
and modifiable (nutrition, hormones, lifestyle, physical 
activity) factors which ultimately determine skeletal 
development73,82,97,257,262,267,272-277. However, the accrual of 
bone is not a linear process, with bone developing most rapidly 
in adolescent years, acquiring ~50 to 60% of total adult 
bone mass within this short and critical period of time216,278-

282. Given the heightened sensitivity and responsiveness 
of bone during its premature stage of life, a considerable 
opportunity (window of adaptation) is provided to improve 
skeletal robustness and resilience through maximising bone 
mass during early-stage development83,267,283-290. Despite 
this apparent ceiling of bone mass augmentation (Figure 
2), bone strength is able to increase through other spatially 
relevant mechanisms in maturity using a regulatory process 
known as re-modelling33,73,79,91,269,291,292.

Remodelling

Remodelling is an on-going, homeostatic and 
restorative process which replaces old and damaged 
bone with new and healthy material (Figure 3) to 
maintain and improve structural integrity and mechanical 
competency19-21,23,26,29,82,107,159,293. The regulatory nature of 

Figure 2. Bone mineral density accrual, maintenance and loss through-out the life-span as indication of bone mass alterations; with 
approximately 50–60% of total adult bone mass gained during adolescent years preceding peak bone mass and skeletal maturity at ~30 
years of age. Bone mass deteriorates gradually following peak bone mass into older age to within normal (green), osteopaenic (yellow) 
or osteoporotic (red) bone density ranges.
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re-modelling relies upon integrated sensory signals in order 
to provide a feedback-controlled modulation of skeletal 
structure; a mechanism designed to sustain current and 
future functional requirements20-24,79,80,91,111. This complex 
and multidimensional process is essential to ensure bone 
structure remains balanced between excessive bone mass 
and excessive bone fragility (a continuum of robustness to 
slenderness) in order to optimise bone strength without 
sacrificing mobility; one of many paradoxical expressions of 
bone adaptation17,25,29,82,107,123. 

Remodelling occurs through stochastic and deterministic 
mechanisms19,20,59,80,91,294. Stochastic remodelling 
describes randomly delivered and spatially non-specific 
forms of regeneration via the endocrine system, whereas 
deterministic remodelling forms the morphological and 

mechanosensitive basis of bone strength adaptation 
through-out the lifespan15,17,123,293,295. Specifically, 
deterministic remodelling represents a precisely assigned, 
targeted and site-specific form of remediation to repair 
damaged bone or initiated as a consequence of mechanical 
behaviour2,19,237,292,293,296,297. In particular, bone acutely 
and accumulatively incurs microdamage in response to 
mechanical loading (gravitational and muscular forces), 
requiring coordinated cellular-level and tissue-level activity 
in order to manage and prevent structural failure and bone 
fracture21,59,79,80,297. As a result, bone is resorbed in regionally 
and temporally distinct locations, detected and driven at the 
cellular level by osteocytes through mechanotransduction in 
order to target, repair and replace damaged material at the 
tissue-level19,20,24,29,79,293,296.

Figure 3. A graphical representation of the remodelling cycle (adapted from 24). Bone resorption (left) is stimulated by a micro-crack which 
severs canaliculi channels between osteocytes leading to osteocytic apoptosis. Lining cells and osteocytes release signals attracting 
cells from blood and marrow reservoirs into the damaged area leading to osteoclastogenesis. Bone formation (right) commences with 
successive streams of osteoblastic activity depositing new lamellar bone. Osteoblasts then transform into new lining cells (extra-cellular 
layer) or osteocytes (embedded in osteoid and bone matrix).

Table 2. Adult bone remodelling (adapted from 96,109110,123).

• Lifespan of BMU: ~6-9 months

• Duration of remodelling: ~4-6 months

• Speed of remodelling: ~25 µm/day

• Bone volume replaced by a single BMU: ~0.025 mm3

• Lifespan of osteoclasts: ~2 weeks

• Lifespan of osteoblasts (active): ~3 months

• Interval between successive remodelling events at the same location: ~2-5 years.

• Rate of turnover of whole skeleton: ~10% per year a

a 10% per year approximation assumes 4% turnover per year of cortical bone (75% of the skeleton), and 28% turnover per year of 
trabecular bone (25% of the skeleton): Calculated as [0.75 x 4] + [0.25 x 28] = 10%; BMU = basic multicellular unit.
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Unlike modelling, remodelling requires a coordinated, tightly 
coupled and sequentially activated cellular response between 
osteoclasts and osteoblasts in order to resorb damaged bone 
and deposit healthy bone without sacrificing mechanical 
competency19,29,33,111,159,242. This response is effectuated by basic 
multicellular units (BMU’s), temporary structures composed 
of grouped osteoclasts and osteoblasts in the presence 
of blood supply and connective tissue11,21,26,82,110,219,298,299. 
Biologically, these multicellular units are similar between 
cortical and trabecular bone, following a standard activation-
resorption-formation sequence via osteocyte-osteoclast-
osteoblast integration23,25,123,242,294,299,300. However, owing to 
their differences in organisation, morphology and vascular 
supply, cortical bone remodels using a tunnel-like resorptive 
cavity (2000 µm long; 200 µm wide), with a low surface-
to-volume ratio and slow turnover rate; whereas trabecular 
bone remodels using a superficial trench-like resorptive 
cavity (60 µm deep), with a high surface-to-volume ratio and 
faster turnover rate7,17,20,23,242. As a proportion of total skeletal 
mass, approximately 3 to 5% of cortical bone and 25 to 
28% of trabecular bone is remodeled each year, completely 
regenerating the adult skeleton approximately every 10 
years23,27,110,123. 

Degradation

Degradation is a gradual deconstructive process whereby 
bone material and structure begin to decline and decay 
through catabolic cellular activity such that resorption 
exceeds deposition overtime, subsequently compromising 
the mechanical competency and ultimate strength of 
bone17,296,301-304. This occurs through non-mechanical and 
mechanical mechanisms in isolation and combination. 
Non-mechanical degradation represents bone loss during 
advanced biological ageing and associated pathological 
conditions such as osteopenia, osteoporosis and other 
disease-states26,33,34,79,84,305-308; whereas mechanical 
degradation refers to environments of disuse (immobilisation 
and microgravity) or overuse (repetitive loading) which 
are preventable and reversible17,309-315. As the cellular 
governance of bone generation, regeneration and repair is 
mainly responsive to mechanical load11,17,24,157,277,296,304,306,316

, the absence or overload stimulus can lead to net-resorptive 
activity and subsequent bone degradation26,303,307,312, 317-319. 

Removal of mechanical loads through microgravity 
(space travel), disuse (immobilisation) or spinal cord 
injury (partial or complete paralysis) results in rapid loss 
of bone mass303,309,312,315,320-332. Specifically, bone density 
decreases by ~2% each month through microgravity, partial 
paralysis or immobilisation without injury, and ~7% each 
month following complete paralysis or immobilisation with 
associated musculoskeletal injury17,26,303,319,321,322,333-338. 
However, actual strength loss is likely greater, as 
concurrent reductions in cross-sectional area and mineral 
content are concealed by bone density measures, yet have 
dramatic consequences on bone strength1,36,70,73,80,103,316,339. 
Nevertheless, bone loss is incremental and progressive 

with time and occurs more rapidly in trabecular bone 
than cortical bone, owing to their different rates of 
responsiveness to muscular and gravitational osteogenic 
stimuli17,26,103,115,307,308. In reversible situations, the time-
course and magnitude of recovery is markedly slower and 
more gradual than loss17,309,315,319,326,327,340,341.

Bone loss is also uniquely layer specific within the 
skeleton, eloquently demonstrated in ageing and spinal cord 
injury cohorts303,342. Specifically, through aging or following 
spinal cord injury, bone cross-sectional area observably 
loses material from the endosteal border and intra-cortically, 
with no clear evidence at the periosteal level102,343,344. For 
example, individuals with traumatic paralyisis prior to 
growth cessation develop smaller periosteal circumferences 
relative to non-paralysed referents, however individuals 
paralysed after growth cessation have similar periosteal 
circumferences to non-paralysed referents303,342,345-347. 
Conversely, bone accretion can occur at the endosteal and 
periosteal surfaces348-350, however whether or not age-
related endosteal and intracortical bone resorption can 
be reduced or prevented with skeletal loading is currently 
unclear351,352. In contrast to deterministic mechanical loading 
effects, antiresorptive and proformative drugs exert their 
effects systemtically (stochastically) through-out bone 
material353-355. Taken together, while cellular proceses are 
tighly coupled, whole organ bone resorption and accretion 
may be situated at different locations within and along the 
bone, and that particular surfaces may be preferentially 
affected. This complex inter-play of bone loss and bone 
accretion across bone cross-sectional areas and along 
bone lengths requires dutiful consideration when designing 
and evaluating mechanical, dietary or pharmacological 
interventions.

Excessive mechanical loads supplied through repetitive 
and cyclical activity may also yield net-resorptive and 
degradative effects on bone38,52,74,75,356. In the absence of 
appropriate recovery, bone fatigue leads to the accumulation 
of microdamage and coalescence of microcracks, 
subsequently increasing the total magnitude and rate 
of remodelling activity at any given time51,75,296,357-359. 
Given that bone reparation requires damaged tissue to 
be removed (~1 month) and then replaced (~3 months) at 
various bone sites simultaneously; excessive magnitudes 
and rates of remodelling have considerable microstructural 
consequences, progressively weakening bone through 
loss of stiffness and strength until eventual failure in the 
form of stress reactions, stress fractures, or heightened 
susceptibility to traumatic fracture38,51,52,74,91,356,358. In this 
regard, weakened bone acquires damage at lower relative 
strain magnitudes; thus fatigued bone creates a progressive 
and positive feed-back loop between mechanical load and 
damage accumulation57,76,157,301,304,317,358-360. Increasing bone 
strength reduces fatigability to customary loads, providing 
greater protection against exercise-induced degeneration, 
however, more importantly, rest and recovery periods are 
imperative to ensure structural integrity and mechanical 
competency remain1,17,70,157,306,361.
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Measuring bone strength

Bone material, structure and strength must be 
quantifiable in order to examine, diagnose, monitor and 
manage skeletal health and bone quality cross-sectionally 
and longitudinally as a mechanism to establish interventional 
efficacy of programs designed to enhance or preserve bone 
strength1,24,36,362,363. However the accessibility of bone in-
vivo remains a constant barrier to scientists. While cadavers 
are often used to investigate historical events and lasting 
transactions in bone76,78,364-366, understanding the volatile 
and evolving adaptations of living and responsive hard-tissue 
remains elusive24,367,368. Modern-day advancements have 
attempted to overcome such limitations by developing a 
multitude of technologies (Figure 4) aimed at non-invasively 
measuring bone density, structure and strength of various 
depths, scales and resolutions1,369-372. Owing to their relative 
cost, availability and levels of radiation exposure, DXA and 
pQCT are commonly used bone densitometry devices in 
clinical and research environments372-377, often supported 
by the collection of biochemical markers through serological 
and urianalytical samples as surrogate measures of bone 
metabolism87,378,379.

Dual-energy X-ray absorptiometry

Dual-energy X-ray Absorptiometry (DXA) is a low-
resolution, uniplanar, two-dimensional bone densitometry 
imaging device which measures full-body and segmental 
projections of mass quantities and densities in-vivo using low-
level radiation through x-ray technology374,380. Specifically, 
DXA emits two distinct photon energies (140 KeV/70 KeV) 
via collimated pencil, fan or narrow beams which pass through 

the individual; the attenuation coefficients and ratios of 
which differentiate hard tissue from soft tissue, and fat mass 
from lean mass in an expedient and effective manner380-382. 
Importantly, DXA quantifies areal bone mineral density 
(aBMD) and its derivatives (bone area and bone mineral 
content) in order to examine bone quality383-385, while also 
measuring body composition, specifically quantifying soft 
tissue (fat mass and lean mass) simultaneous with hard tissue 
(bone mass) in order to concurrently measure materials 
which co-adapt with each other381,386-388. While DXA produces 
valid and reliable, scan-rescan measures of whole-body bone 
mass characteristics and body composition components, 
numerous standardised nutritional, procedural and analytical 
controls are required to ensure longitudinal integrity of 
measures when examining interventional efficacy386,389-394.

Bone health and skeletal fragility diagnoses of bone 
disorders are clinically defined by the World Health 
Organisation using DXA-derived aBMD T-scores from 
population-based reference values, highlighting its 
established and reputed position as the gold standard in 
clinical environments384,395-397. However, clinical examinations 
using DXA technology are inherently flawed, as bone 
material (architecture) and structure (size and shape) cannot 
be measured374,383,398,399. Specifically, DXA’s uniplanar, low-
resolution images restrict clinicians to descriptions of whole 
bone mass, which only partially explains bone strength 
variation24,398,400-402. Inaccurate diagnoses of osteoporosis 
therefore prevail, with many fragility fractures prevalent in 
categorically low-to-moderate risk individuals, classified 
within normal or osteopenic regions72,275,373,397,403, further 
confounded by regional disparities and T-score variations 
between measurable sites within a given individual. Indeed, 
denser bone isn’t always stronger, and low density isn’t 

Figure 4. Material and structural determinants of bone strength or fragility (left) with associated technologies required to examine bone 
properties (right); along the macroscopic, microscopic and nanoscopic continuum [top to bottom], (adapted from 1).
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always osteoporotic383,384,403,404, thus no identifiable 
total body or site-specific BMD threshold abruptly or 
disproportionately increases fracture risk. Instead, BMD is 
continuously variable with fracture risk, such that lower BMD 
equates to higher fracture risk, however does not explicitly 
predict it373,384,401,404. Therefore, more refined and detailed 
analyses of bone material and structure are required for more 
appropriate and predictive diagnoses, potentially deliverable 
with other technologies24,383,385,399,405,406.

peripheral Quantitative Computed Tomography

Quantitative Computed Tomography (QCT, axial; pQCT, 
peripheral) is a multi-planar, three-dimensional bone 
densitometry imaging device which measures the material 
and structural properties of bone at macroscopic depth, 
providing clinicians with more accurate descriptions of 
bone shape, size and quality399,407,408. Specifically, pQCT 
transmits targeted collimated beams at selected sites along 
the length of a given long bone, reconstructing rotational and 
contiguous two-dimensional samples at each site to deliver 
a three-dimensional cross-sectional tomographic image of 
bone, muscle and fat409-411. As a result, pQCT devices are 
able to provide unobstructed circumferential measures 
of hard- and soft- tissue masses, generating volumetric 
measures of area, content and density for trabecular bone, 
cortical bone, marrow, muscle and fat compartments; bone 
strength indices and fracture loads; periosteal and endosteal 
size; cortical thickness; and bone mass410-414. Diagnostically, 
this enables pQCT to address many limitations previously 
experienced through DXA examinations which provide 
precise, stable and reliable measures of bone and muscle 
components333,376,383,399,407,411,412,415.

Bone quality and skeletal fragility examinations using pQCT 
are superior to those provided by DXA373,408,414,416. Importantly, 
applications of mechanical assumptions to quantified material 

and structural properties across numerous cross-sections 
allow indices of bone strength to be established, providing 
better predictive accuracy of fracture risk beyond generic 
aBMD and vBMD measures383,408,412-415,417,418. Despite the 
advantageous diagnostic power afforded to clinicians using 
pQCT, complexity arises as normative and comparative data 
for general, specific and special populations scarcely exist at 
present, owing to its emerging status as an alternate imaging 
device in clinical and research environments373,399,419-422. 
Supplementing DXA measures with pQCT measures has 
been suggested as a potential solution for a detailed insight 
of bone strength adaptation and fracture risk with clinically 
relevant reference values423. Some forms of pQCT are 
limited to macroscopic depth, however the emerging use 
of micro-scanners (HR-pQCT) provides higher resolution 
images that are capable of detecting critically important 
microarchitectural features including trabecular thickness, 
connectivity and number; cortical porosity; volume fraction; 
and arterial calcification127,369,417,418. HR-pQCT is still gaining 
ascendency in clinical and research settings due to its 
relative infancy in development, high associated cost, and 
limited ability to access an array of peripheral skeletal 
sites. HR-pQCT is likely to increase in popularity given 
the diagnostic importance and catastrophic consequence 
of microarchitectural deterioration in disease-states 
and advanced ageing, particularly as its technology and 
capabilities evolve80,127,275,403,424.

Biochemical markers

Serological and urianalytical provisions of biochemical 
markers provide clinicians with a useful methodology to 
examine physiological alterations in bone metabolism, 
specifically the prevalence of formative and resorptive activity 
within the skeleton425-428. Bone mass accrual, maintenance 
and degradation are explicitly determined by counteracting 

Table 3. Available biochemical markers used to examine formative, resorptive and rate of bone metabolism through serological and 
urianalytical mechanisms87,431.

Biochemical Marker Abbreviation Sample Bone Metabolism

Bone Alkaline Phosphate BAP / BALP Serum Formation

Osteocalcin OC / BGP Serum Formation 

Carboxyterminal, Type I Collagen PICP Serum Formation 

Aminoterminal, Type I Collagen PINP Serum Formation 

Pyridinoline PYR Serum & Urine Resorption 

Deoxypiridoline DPD / D-PYR Serum & Urine Resorption 

Carboxyterminal Crosslink, Procollagen I ITCP Serum Resorption 

Carboxyterminal Crosslink, Type I Collagen CTx Urine Resorption 

Aminoterminal Cross-link, Type I Collagen NTx Urine Resorption 

Tartrate-resistant Acid Phosphate TRAP5 Serum Resorption

Parathyroid Hormone PTH Serum Turnover Rate

Note: Information adapted from 69,431.
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metabolic processes (formation and resorption) responsive 
to endogenous (hormones, cytokines, growth factors) and 
exogenous (mechanical loading) factors318,378,429,430. 

Biomarkers become clinically useful to examine bone 
turnover rates underpinning bone health or skeletal disease 
(Table 3) and importantly quantify acute and chronic 
metabolic alterations to experienced stimulus and targeted 
interventions87,368,379,425-427,432. While biochemical samples 
are easily collected and analysed, do not involve harmful 
radiation, and have high sensitivity to change; their diagnostic 
capabilities in isolation are limited87,368,433,434. In particular, 
biomarker concentrations and behavioural profiles are highly 
variable between individuals, and indiscriminately represent 
global anabolic or catabolic activity of the entire skeleton, 
such that biomarker analyses cannot provide targeted 
and localised examinations of formative and resorptive 
behaviour368,433,434. However, owing to its sensitivity to 
measure dynamic early onset alterations, biochemical 
markers can be complementary to other bone quality and 
skeletal fragility examinations, performed in conjunction with 
static morphological measures provided by radiographic and 
densitometric devices87,378,427,435,436.

Conclusion and future research

Bone is impressive in its design, architecture and 
maintenance as a living biomaterial with distinct porosities 
(trabecular and cortical), tissues (woven and lamellar) and 
materials (organic and inorganic) that, together, form a robust 
multidimensional structure (macroscopic to nanoscopic) 
with a deliberate mass (size, geometry and density) aimed at 
achieving optimal mechanical strength to support locomotion 
and activities of daily living. Growth, development and 
homeostasis is eloquently achieved through tightly coupled 
cellular processes (osteoblasts, osteoclasts, osteocytes 
and bone lining cells) which underpin bone quality and the 
continual generation and regeneration of bone in response 
to mechanical loading and damage acquisition through 
mechanotransduction.

Although, broadly speaking, bone resorption and 
formation are tightly coupled, the balance between these 
two processes can tilt to favour one or the other resulting 
in net gain or net loss. Key reasons for shifts in otherwise 
homeostatic balance can be due to the presence or absence 
of mechanical loading, metabolism (for example, withdrawal 
of female reproductive hormones through menopause), 
or pathology. Moreover during growth and development, 
formation and resorption are not necessarily co-localised in 
bone (for example, transformative morphological narrowing 
of long bone metaphyses to become diaphyseal). In addition 
to understanding the net effect, it is important to realise that 
the timing and duration of bone resportion and formation 
do not necessarily happen concurrently. Rather, bone 
resorption takes less time than formation and typically 
precedes formation. Additionally, bone formation occurs 
across essentially two phases: 1) laying down the collagen 

meshwork, and 2) subsequent mineralisation (explained 
further in our companion review paper12). In terms of the 
gross bone morpohology, it bears repeating that responses 
to mechanical loads are site-sepcific. That is, it is entirely 
possible to have strong lower limb skeletal structures 
yet weak upper limb skeletal structures as is the case in 
endurance runners for example. Moreover, even within a long 
bone, at a particular site-specific location along the length of 
the bone, it is possible to lay new bone material in particular 
directions, while the direction at a right angle remains 
unmodified by loads, and similarly, the diaphysis may adapt 
while no changes are observed in the epiphysis. 

This review highlights the complexity of evolving bone 
morphology, specific to bone anatomy and physiology, 
underpinning the biological basis of bone strength, and 
the many cooperative or competing processes required to 
delicately maintain bone health. Taking the above together, 
we assert the need for clinicians and researchers to 
understand and thus consider the underlying physiology 
and technical limiations of assessing bone as paramount 
in devising appropriate clinical measurement and active 
monitoring strategies to allow timely yet accurate 
assessments which capture the properties of interest. For 
example, attempting to capture bone formation with x-ray-
based, bone densometric methods will fail unless sufficient 
time for mineralisation is allowed as only the mineral 
incorporated into the bone contributes meaningfully 
to absorbing the radiation used to assess the bone. To 
this end, for clinical or research interventions aiming to 
evaluate observed x-ray based, densiometric changes in 
such properties, a minimum of 6 to 12 months would be 
our recommendation. Similarly, in-vivo and non-invasive 
methodologies to assess the quality and properties of 
type 1 collagen at given bone sites or skeletal regions is 
a potentially necessary yet presently absent assessment, 
relying solely on systemic biomarkers (from serum or 
urine) or bone biopsy, thus limiting the accessibility and 
our understanding of the organic matrix of bone. Owing 
to the dynamic nature of bone biology, and its complex 
and routine interaction and communication between bone 
cells and other bodily organs, a deeper recognition and 
understanding of the governance and subservience of 
various processes and organs within the human body, such 
as muscle-bone interactions (described in our companion 
review12), will continue to produce new knowledge and 
assist clinicians and researchers in the development new 
therapeutic approaches to bone diseases, and management 
of bone health across the lifespan.
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